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Preface

Thanks go to the staff of the Robotic Research Lab at the University of Kaiser-
slautern that helped me solve tricky problems during the work on this thesis.

Hereby I would also like to apologize to all of my friends and family that suffered
from my moods and constant pressure during these ten weeks, which are – in my
opinion – much too less time to create anything that holds water.

The image on the cover shows the FlexRay for Linux logo, designed by Joachim Folz
and kindly released under the Creative Commons BY-NC-SA 3.0 Germany license1.
It depicts the ray2 from the official FlexRay logo (see Figure 1) morphed with Linux’
mascot, the penguin Tux.

Figure 1: The official FlexRay logo

1http://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en
2Not an optical ray but the fish

http://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en
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1. Introduction

1.1 Motivation

Today the need for deterministic communication protocols for security critical ap-
plications constantly increases. These applications can especially be found in the
automotive domain. As concepts like x-by-wire with x ∈ {drive, steer, brake, . . .},
where steering arms and brake pipes are replaced by electric wires and integrated
circuits, become more and more popular, robust and fail-safe communication sys-
tems are needed to realize such functionality. Failures of these critical systems will
almost immediately lead to severe accidents and personal injury.

Of course, the use of communications protocols such as FlexRay is not limited to
automotive applications. Especially in robotics, similar problems exist, consider a
heavy autonomous offroad robot, like RAVON1. A robot of this size can easily harm
people if the safety mechanisms fail.

But not only safety concerns are of interest in robotics. There are often situations
where a lot of sensor values need to be queried and actuator values have to be set.
Often, also exceptional events that occur sporadically, such as user interaction or
debug messages that need to be transmitted. For such scenarios FlexRay is well-
suited, because it provides guaranteed, periodic static slots and optional dynamic
slots that transmit data every once in a while. At the Robotic Research Lab2

(RRLab) at the University of Kaiserslautern, currently Controller Area Network
(CAN) is used to transmit sensor and actuator values. Future applications with
many sensors and actuators will probably exceed the capabilities of CAN and need
a communication systems with more capacity, such as FlexRay.

To effectively debug or to interact with embedded systems that employ FlexRay, it is
necessary to somehow connect a personal computer to the system. Because Linux is
the default operating system at the RRLab, a framework for Linux is needed to work
with it. As FlexRay is a quite young technology that has not yet been intensively

1http://agrosy.cs.uni-kl.de/en/robots/ravon/technical-data-of-ravon/
2http://rrlab.cs.uni-kl.de/

http://agrosy.cs.uni-kl.de/en/robots/ravon/technical-data-of-ravon/
http://rrlab.cs.uni-kl.de/
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used in the industry, there exist few attempts to bring this technology to Linux.
Solutions by Vector Informatik GmbH3 only include Microsoft Windows drivers at
the time of writing. TZ Mikroelektronik4 offers products with support for a variety
of operating systems, including Linux, but does not seem to make these drivers and
frameworks publicly or even freely available. Also their code is probably limited to
their own hardware products only.

1.2 Goals

The goals of this Bachelor thesis are the following:

• Provide an introduction to and a basic understanding of the FlexRay protocol

• Development of a cheap and universal interface to connect a FlexRay cluster
to virtually any computer running Linux

• Establishment of an infrastructure in the Linux kernel to communicate over
FlexRay, similar to the SocketCAN architecture [LLCF 06]

• Make this infrastructure freely available

• Describe a specific hardware setup of a FlexRay cluster, leaving the reader
with enough knowledge to implement own FlexRay systems

1.3 Overview

The thesis is divided into several chapters. chapter 1 contains the introduction you
are currently reading, chapter 2 gives a general, controller independent overview
of FlexRay. The next chapter, chapter 3, introduces the hardware components
that have been used during the research as well as the low level FlexRay driver by
freescale. chapter 4 describes the implementation of FlexRay for Linux, followed by
chapter 5 which contains conclusions and possible future work, based on this thesis.

1.4 Notations

For the sake of readability, the following notations will be used throughout the thesis:

• Hexadecimal numbers will be prefixed by 0x, such as 0x1337

• Binary numbers (bitvectors) will be suffixed with b, such as 1001100110111b

• Function names, datatypes, variables and constants will be printed in monospace
font, like ioctl(), struct sockaddr_fr, Fr_buffer_info_type, FLEXRAY_

INIT

• File-system paths and systems commands will be printed in monospace font,
/dev/ttyUSB0, lsmod

3http://www.vector.com/
4http://www.tzm.de/

http://www.vector.com/
http://www.tzm.de/
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• Network device names and Kernel module names will also be printed in monospace
font, e.g flexray0, flexray_serial.ko

• Web-links are colored blue and should be “clickable” in the online version of
the document, example: http://www.uni-kl.de/

http://www.uni-kl.de/


2. FlexRay

This chapter will first give a short overview of FlexRay and its history. Then, the
communication cycle and the format of FlexRay frames is explained in detail. Most
of the information in this chapter can be found well-explained in [Rausch 07], but the
FlexRay protocol specification [PS 05] is also a very valuable source when studying
FlexRay.

2.1 Overview
FlexRay has been designed by the FlexRay consortium as a flexible and fast com-
munication system that can satisfy many of the needs of automotive applications.

The FlexRay consortium has existed since 2000, its core members are BMW, Volk-
swagen, Daimler AG, General Motors, Robert Bosch GmbH, NXP semiconductors
and freescale semiconductors. Additionally to the core members, there are over 100
other members that develop FlexRay hard- and software. FlexRay has always been
developed to suit the needs of automotive applications, such as emerging trends like
steer- or break-by-wire.

The need for deterministic communication systems comes clear while looking at
the Controller Area Network , which is in use for automotive applications for some
time now. CAN uses priority-based bus arbitration that allows the user to transmit
important messages in favor of less important ones. Unfortunately, a lot of highly
important messages can suppress all other messages quite easily. It is quite difficult
to transmit two data streams with equal priorities over CAN.

FlexRay overcomes this problem by dividing the medium into static and dynamic
time slots. During the static segment, a deterministic access schema is used to trans-
mit periodic messages while the dynamic segment allows priority-based transmission
of sporadic messages.

Another great feature of FlexRay is the capability to use two physical transmission
channels, named channel A and B. Each channel can transmit up to 10MBit/s on
the physical layer, which is ten times the factor of the maximum rate that is possible
with a CAN channel. The two channels can be used to double the overall datarate,
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provide redundancy or even both, by transmitting only important messages on both
channels (see subsection 2.3.1 for details).

To connect to a FlexRay cluster, a FlexRay Communication Controller (CC) is
required. It handles the protocol according to the specifications and connects to
some host, e.g. a microprocessor. There exist mainly two types of FlexRay CCs,
standalone integrated circuits and controllers integrated into Microcontrollers (µCs)
or Digital Signal Processors (DSPs).

2.2 FlexRay Network Topologies

FlexRay is not a classical bus system with a single broadcast transmission medium to
which all nodes are connected. This is the reason why the reader will rarely find the
word “bus” in this document. FlexRay networks are not limited to simple busses. It
is also possible to use active star couplers, similar to Ethernet topologies with hubs.
Even the possibility to use different network topologies on the two channels A and
B exists. When speaking of a FlexRay communication system, one usually calls it a
FlexRay cluster .

A simple topology where each channel is connected to a bus can be found in Fig-
ure 2.1. The same logical topology with a different physical realization is the star
topology in Figure 2.2. Finally, a mixed topology consisting of a bus and a star
coupler is illustrated in Figure 2.3. Another interesting topology is illustrated in
Figure 2.4, where a whole bus is connected to the branch of a star coupler. Please
note that FlexRay networks are not limited to the few examples here, there are some
more possible topologies that will not be further discussed.

node 1 node 2 node 3

A

B

Figure 2.1: Two channel bus topology

2.3 The Communication Cycle

A FlexRay cluster transfers data in cycles. The frequency of the cycles is defined by
the cycle time of the cluster, which can be configured at configuration time. Cycles
are numbered from 0 to 63, numeration starts again at 0 after 64 cycles. Figure
Figure 2.5 shows the visualization of the cycle time at a real FlexRay node that has
been captured using an oscilloscope.

One whole communication cycle consists of four parts, a static segment, a dynamic
segment, the Symbol Window and the Network Idle Time (NIT), see Figure 2.6.
The static segment and the Network Idle Time are mandatory for every FlexRay
cluster while dynamic segment and Symbol Window are optional.
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node 1 node 2 node 3

A B

Figure 2.2: Star topology with two star couplers

node 1 node 2 node 3

node 4

A

B

Figure 2.3: Mixed topology, channel A on bus, channel B on star coupler

The Symbol Window is used to transmit symbols like the Media Test Symbol (MTS),
which can be used to validate that the all nodes are correctly operating, but their
scope is beyond this document. Interested readers may refer to the FlexRay Protocol
Specification [PS 05]. The Network Idle Time is a phase in the communication cycle
where no communication takes place. The time is be used by the FlexRay Com-
munication Controllers to perform calculations that cannot be done during normal
communication, such as running algorithms to synchronize the time on all nodes.

Of greater interest for the user of the protocol are the concepts of the static and the
dynamic segment. Both of them will now be explained in detail.

2.3.1 Static Segment

The static segment uses Time Division Multiple Access (TDMA) to reserve band-
width for nodes. TDMA allows multiple users to access a shared medium by
dividing the time into several, usually same-sized, slots. Each node is assigned one
or more of these slots. Only the “owner” of a slot may send in it, see Figure 2.7.
One important prerequisite for TDMA to work is a common understanding of time.
The clocks of all participants must be synchronized, so that each one can send in
the correct slot and at the correct slot-boundaries.
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node 1 node 2 node 3

node 4

A

A

Figure 2.4: Bus topology connected to a star coupler

TDMA is exactly the procedure that is used in the static segment of FlexRay to allow
guaranteed, contention-free1 communication. It is important to note that the static
segment is usually configured before deploying a FlexRay system. As soon as the
communication is running, the configuration of the static segment cannot be changed
anymore2. Essential for the organization of the static segment is the division of the
segment into slots. These slots are all of the same length. The number of static slots
can be configured for a FlexRay cluster using the variable gNumberOfStaticSlots.
Each slot carries exactly one FlexRay frame which usually contains payload. The
frame-ID of this frame is always equal to the id of the slot it is sent in. In slot 1 only
frames with an ID of 1 will be sent, in slot 2 all frames have the ID 2 and so on.

The length of each slot is given by the configuration variable gdStaticSlot and
needs not only be long enough to carry a whole FlexRay frame but also an idle
delimiter as well as some safety margin for the cluster to operate properly. See
Figure 2.8 for a visualization of the static segment within one communication cycle.
The first slot in the static segment is always numbered one, not zero.

When designing a FlexRay system, especially the static segment must be tailored
well for the intended usage-scenario. This process includes assigning static slots to
nodes. Keep in mind that FlexRay provides two physical channels. During each slot,
channel A and channel B can be used to transmit data. For improved redundancy a
node may use both channels for the same data, but may also transmit different data
on each channel. A slot can even be used by two nodes, one channel for each node.

Not all static slots need to be used, of course. There may also be empty slots where
no frames will be sent in. Figure 2.9 shows how such a typical assignment of slots
might look like.

2.3.2 Dynamic Segment

The dynamic segment is more complex as the static segment as it does not use a
simple access schema like TDMA, but a schema that implements contention among
nodes. This allows a priority-based access similar to that of Controller Area Network

1Contention-free means that there is no competition among senders, slots are exclusively re-
served.

2Except when the communication is stopped, then reconfiguration is possible.
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Figure 2.5: Visualization of the cycle time, which is 5ms (or 5000 macro ticks) for this
example

(CAN). The method used for FlexRay is also called the Minislot Procedure, as the
time of the dynamic segment is also slotted into a number of Minislots (given by the
configuration variable gNumberOfMinislots).

During the dynamic segment, a priority based access schema is used. Numbering of
the dynamic slots continues the numbering of the static slots seamlessly, so if the last
static slot was numbered 60, the first dynamic slot will be numbered 61. A node may
send in the dynamic segment, when its slot counter matches the ID of the frame to
be sent. It is important to notice, that each frame sent in the dynamic segment may
occupy several Minislots (in contrast to the static segment, where exactly one slot
must be used). The slot counter is increased as soon as a frame has been completely
sent, so there is no direct mapping of minislot numbers to slot numbers. If a slot is

static segment dynamic segment symbol window NIT

cycle time

time

Figure 2.6: Contents of one FlexRay communication cycle
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A B C A A B C A . . .

cycle time

time

Figure 2.7: The principle of Time Division Multiple Access (TDMA), there are three
participants, A, B and C. Note that A has two time slots per cycle reserved and that the
fifth slot is unused.

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 slot 7

FlexRay Frame

static segment

time

Figure 2.8: Contents of the static segment of an example communication cycle

not used, it will only “waste” one (quite small) minislot before the next slot begins.
It can easily be seen, that higher slots IDs have lower priority. If there is much to
send in lower slots, the higher slots might just “drop out” of the dynamic segment,
which means the slot counter will never reach a slot ID of e.g. 70 and so a node using
slot 70 may not send in that particular cycle. See Figure 2.10 for a visualization of
the communication in the dynamic segment.

2.4 Frame Format
This sections describes the layout of FlexRay frames as they are transmitted in either
static or dynamic slots. The description of the frame-format can be found in the
FlexRay Communications System Protocol Specification [PS 05], each frame consists
of a header, the payload and a trailer containing a checksum, see Figure 2.11.

2.4.1 Frame Header

The header has an overall size of 5 Bytes. Figure 2.12 shows the format of the Frame
Header. The fields in it will now be explained in detail.

2.4.1.1 Reserved Bit (1 bit)

The first bit in the frame is a bit that has been reserved for further expansions of
the protocol. For protocol version 2.1, a sending node always sends a zero but a
receiving node must accept both zero and one in this field.
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A

B

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 slot 7

node 1

node 1

node 2

node 3

node 4 node 5 node 1

node 1 node 6

static segment

time

Figure 2.9: Assignment of slots (on two channels) to nodes of the cluster

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Minislot numbers

Slot
61

Slot
62

Slot
63

Slot
64

Slot
65

Slot
66

Slot
67

Slot
68

Slot
69

Slot
70

Slot
71

dynamic segment

time

Figure 2.10: Example communication in the dynamic segment. Only one channel is
depicted.

2.4.1.2 Payload Preamble Indicator (PPI) (1 bit)

The Payload Preamble Indicator indicates the presence of special control information
in the frame. For the static segment, this bit indicates whether there is a Network
Management Vector contained in the payload. Network Management Vectors can
be used for powersaving purposes but are optional to implement according to the
FlexRay protocol specification. In the dynamic segment the bit is set to tell the
receiver that a message identifier is present in the payload, the purpose of this
message identifier is not discussed here.

Header Payload (0-254 Bytes) Trailer (CRC)

FlexRay frame

Figure 2.11: Layout of one FlexRay frame
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Payload
Length
(7 bits)

Header CRC
(11 bits)

Cycle Count
(6 bits)

Figure 2.12: Format of the frame header

2.4.1.3 Null Frame Indicator (1 bit)

If the Null Frame Indicator bit is set to zero3, the frame contains no usable payload.
The payload bits are all set to zero in this case. There are several situations in which
null frames may be sent, e.g. during startup or when no new data is ready to be
transmitted in the static segment.

2.4.1.4 Sync Frame Indicator (1 bit)

A set Sync Frame Indicator bit indicates that this frame is a sync frame which is
used to synchronize the whole FlexRay cluster. Note that if a FlexRay node sends
sync frames (i.e. it is a sync node), it does this in one slot, the so-called Keyslot.

2.4.1.5 Startup Frame Indicator (1 bit)

The Startup Frame Indicator is set to one for startup frames. Startup frames are
needed during startup of the cluster and are only sent by coldstart nodes.

2.4.1.6 Frame ID (11 bits)

The Frame ID reflects the slot number in which the frame is transmitted. The ID
has a length of 11 bits, thus theoretically 2048 different frame IDs are possible, but
ID 0 is invalid.

2.4.1.7 Payload Length (7 bits)

The Payload Length field is seven bits long and describes the number of 16 bit words
in the payload. This value must be multiplied by two to get the size of the payload
in bytes. Values from 0 to 27− 1 = 127 are possible, thus the maximum payload per
frame is 254 bytes.

3Note the inverted semantics here!
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2.4.1.8 Header-CRC (11 bits)

The Header-CRC is calculated over the Sync Frame Indicator, Startup Frame In-
dicator, Frame-ID as well as the Payload Length. The CRC polynomial is defined
as

x11 + x9 + x8 + x7 + x2 + 1 (2.1)

which will be represented as 101110000101b = 0xB85. Header-CRC generation
assumes a fixed initialization vector of 0x1A. A reference implementation of the
checksum algorithm can be found in Listing A.1 on page 49.

2.4.1.9 Cycle Count (6 bits)

The Cycle Count field contains the value of the cycle counter at the transmitting
node, it ranges from 0 to 63.

2.4.2 Frame Trailer

After the payload, the Frame Trailer follows. It has a length of 3 bytes and contains
another CRC-sum, the Frame CRC. This CRC is calculated over the whole frame.
The polynomial is defined as

x24 + x22 + x20 + x19 + x18 + x16 + x14 +

x13 + x11 + x10 + x8 + x7 + x6 + x3 + x+ 1 (2.2)

which will be represented as 1010111010110110111001011b = 0x15D6DCB. The
trailer CRC uses different initialization vectors4 for the two different channels A and
B. Channel A uses 0xFEDCBA while channel B uses 0xABCDEF. This measure
makes the system robust against accidentally interchanging the two channels.

2.4.3 Frame Encoding

Before a frame is physically transmitted on the medium, a Transmission Start Se-
quence (TSS) is sent out. The TSS consists of a configurable time of low level on
the medium. It is used to activate bus drivers and active star couplers on the cluster.
After the TSS follows the so-called Frame Start Sequence (FSS), a single high-bit.
Then the real frame data including header, payload and trailer follows byte per byte.
Each byte is prepended by a Byte Start Sequence (BSS), consisting of a high bit
directly followed by a low bit. The purpose of the BSS is to avoid long sequences
of high or low bits that make synchronization of the receiver difficult. At the end
of the data, another sequence, called the Frame End Sequence (FES) is sent out.
This sequence is formed by a low bit followed by a high bit. If the frame is sent in
the static segment the transmission is over now, see Figure 2.13.

For a frame in the dynamic segment, a little more has to be done. After the FES,
a Dynamic Trailing Sequence (DTS) has to be sent to extend the duration of the
transmission till the next minislot begins, see Figure 2.14.

4The shift-register used to compute the CRC sum is initialized with this value before shifting
any data in.
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Figure 2.13: Encoding of a frame sent in the static segment
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Figure 2.14: Encoding of a frame sent in the dynamic segment

2.4.4 Example Frame

A typical Startup Frame, captured on the physical layer, can be seen in Figure 2.15.
The Null Frame Indicator is zero, so there will be only zeroes as data. Both Sync
Frame Indicator and Startup Frame Indicator are set so this frame will be used to
synchronize clocks as well as for synchronization during the startup phase. The
Frame-ID is set to 4 for this frame because the frame is sent in slot 4 (this has been
configured a priori). The Payload Length indicates 16 · 2 = 32 bytes of payload.
The following 11 bits form the CRC-sum which equals 0x6D3. The Cycle count is
zero which means that this is the first Startup Frame sent by this node. The 32
data bytes announced in the header can be counted in the upper part of the figure,
it is followed by a trailer containing a CRC-sum for the frame. Figure 2.16 shows
the end of the Startup Frame with the trailer containing the 24 bit long CRC-sum
which is 0x955F4E in this example (this data has been collected on channel A, so
the sum is correct).

2.5 Protocol States

The FlexRay protocol knows several protocol states (also called Protocol Operational
Control (POC) states). Many operations can only be executed during a specific
POC-state. The configuration of a controller may e.g. only be set in the POC:config
state.

When a FlexRay Communication Controller is powered up or reset, it starts in the
POC:default config state. It must then be brought into the POC:config state
by the host. In this state, the CC may be configured. When the configuration
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TSS Frame-ID
(= 4)

Length
(= 16 · 2
Bytes)

CRC
(= 0x6D3)

Cycle-
Count
(= 0)
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1 2 3

Figure 2.15: FlexRay frame with magnified frame header in the lower part of the image
and overlayed descriptions

mode has been left, the CC make the transition into the POC:ready state. As soon
as it is instructed to start the communication it will go into the POC:startup. If
the startup is successful, it will advance to POC:normal active, this is the state
where normal communication takes place. If errors are encountered during commu-
nication, the CC will automatically go into POC:normal passive or POC:halt. In
POC:normal passive the controller may only receive frames, but not send them.
During POC:halt, the whole communication is stopped. Figure 2.17 visualizes the
most important states and the transitions between them.
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Figure 2.16: FlexRay frame with magnified frame trailer in the lower part of the image
and overlayed descriptions
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Figure 2.17: Important protocol states and transitions



3. Hardware Components

After the general description of the principle of operation of FlexRay, the specific
implementation that has been used during the research for this thesis will now be
explained. The experimental boards that carry the FlexRay Communication Con-
trollers and that have been used throughout the work will also be presented. Note
that these boards have been designed before this thesis and are not part of the work.

3.1 Experimental Board

For the research, two identical experimental boards served as the hardware to work
with. Each of the boards hosts a MC56F8357 Digital Signal Processor, a MFR4310
FlexRay Communication Controller, an Altera MAX II CPLD, 512 KiB SRAM, as
well as some less interesting components. All important components such as DSP
and FlexRay CC will be introduced in the following sections.

The logical layout of the board can be seen in Figure 3.1, see Figure 3.2 for an image
of the real board.

DSP
MC56F8357

CPLD
Altera

MAX II

FlexRay
CC

MFR4310
SRAM

Figure 3.1: Logical layout of the experimental FlexRay board
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Figure 3.2: Top of the experimental FlexRay board

3.2 Freescale MC56F8357 DSP
The MC56F8357 is a 16bit Digital Signal Processor from freescale semiconductors. It
is capable of executing up to 60 MIPS1 at 60MHz core frequency. Important internal
peripherals include 16kB data RAM, 256kB program flash, 2x6 PWM channels, 4
timers and two UARTs and 1 Controller Area Network controller [56F8357 07].

3.2.1 Memory Layout

The DSP makes use of some external devices in memory mapped mode, such as the
external RAM which is connected to the chip-select pin CS0. The external RAM
starts at address 0x40000 and ends at 0x7FFFFF, 512 KiB later. Unfortunately the
RAM or the connection to it seems to be broken as it is not working reliably, thus it
remains unused. The FlexRay Communication Controller is connected to chip-select
CS4 and mapped to the addresses 0x3000-0x4FFE. See Figure 3.3 for an illustration
of the memory mapping.

3.3 Freescale MFR4310 FlexRay Communication

Controller
Freescale’s MRF4310 is a standalone FlexRay Communication Controller. It sup-
ports different bit rates such as 2.5, 5, 8 or 10 MBit/s. Three selectable host in-
terfaces provide connectivity to microcontrollers: the HCS12 interface, the Asyn-
chronous Memory Interface (AMI) as well as the MPC Interface [MFR4310 08].

1Million Instructions Per Second
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Figure 3.3: Relevant part of the memory mapping for the Digital Signal Processor

The controller provides no physical layer interface so an external physical layer in-
terface has to be used. See the next section about the physical layer.

3.4 Physical Layer Interface

The FlexRay Physical Layer is specified in [EPL 06]. It specifies what cables should
be used, how bus drivers should be designed and much more. FlexRay signals are
always transmitted differentially over two wires to be more robust against external
disturbances. Thus two wire pairs must be available if both FlexRay channels are
used.

The experimental board uses the Maxim MAX3485 integrated circuit which is ac-
tually a RS-485 transceiver, capable of running with up to 10 MBit/s datarate
[MAX3485 97]. As cable, standard shielded twisted pair cable of category 5 or bet-
ter is used. This cable is well-known from Ethernet and widely available in different
lengths.

3.5 FlexRay UNIFIED Driver

Fortunately, freescale, the manufacturer of the MFR4310 FlexRay Communication
Controller, has released a driver for a variety of their FlexRay controllers. This
driver is called the FlexRay UNIFIED Driver [Freescale 06]. The driver code runs
well on the MC56F8357 DSP.

The goal of this driver is to provide a hardware independent API to various freescale
FlexRay Communication Controllers including standalone controllers as the MFR4310
employed here as well as microcontrollers with integrated FlexRay modules.

To use the driver, the Communication Controller should first be hardware-reset. This
is not part of the driver but can easily be done manually by triggering the reset pin of
the controller. The first action by the driver is to use Fr_init to put the module into
the configuration state POC:config. In this state, Fr_set_configuration sets the
configuration parameters. The function Fr_buffers_init configures the necessary
message buffers, according to the configuration given.
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For each message buffer, a callback function may be registered using Fr_set_MB_

callback. This function will then be called when data has been received for the
buffer or new data can be sent (in case of a transmission buffer).

Fr_leave_configuration_mode has to be used to exit the POC:config and enter
the POC:ready state. In this state, the controller will wait for a successful startup
of the cluster. Manually stopping the FlexRay communication can be achieved by
using Fr_stop_communication.

3.5.1 Message Buffers

Reception and transmission of FlexRay frames is realized by using message buffers.
These message buffers are a little non-intuitive thus they will be discussed in detail.

First, there exist four types of buffers that can be configured using their correspond-
ing configuration-datatypes:

• Transmit buffers

• Receive buffers

• FIFO receive buffers

• Receive shadow buffers

Some configuration options are present in all types of message buffers2. Each message
buffer must have a slot ID (or even ranges of IDs in the case of FIFO message buffers)
as well as a channel-type (A, B or AB) assigned to define when and on which channel
reception of transmission takes place. Receive and transmit buffers also provide a
filter configuration that is matched against the current cycle. This allows to send or
receive only in cycles that match the filter.

Transmit message buffers are used to transmit data to the FlexRay cluster, they
are configured using the struct Fr_transmit_buffer_config_type. Configuration
of a transmit message buffer includes payload length, buffer type (single of double
buffered), transmission mode (i.e. state or event driven transmission) and some
more. If double buffering is used, the buffer will occupy two message buffers. Receive
buffers can be used for receiving data from the FlexRay cluster. They are configured
with Fr_receive_buffer_config_type. The advantage of double buffers is that
there can be no conflicts between the user and the Communication Controller in
buffer access. A single buffer is locked when the user writes to it or the CC reads
from it while sending to the cluster, so conflicts will result in non-updated message
buffers or non-transmitted messages (a Nullframe will be sent instead).

Transmission buffers configured for state driven transmission are automatically trans-
mitted on every cycle, regardless of whether the buffer contents have been updated
or not. On the other hand, event driven buffers will only be transmitted when the
buffer contents have been updated. If no new data is available a Nullframe is sent, in
case the buffer is configured for the static segment or nothing is sent for the dynamic
segment.

2Excluding shadow buffers which serve a special purpose
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FIFO receive buffers offer an even more complex setup that allows for more sophis-
ticated filtering and more space for frames. With a depth of e.g. 10 a FIFO can
be used to receive up to 10 FlexRay frames that can be processed later. FIFO re-
ceive buffer are configured using the Fr_FIFO_config_type datatype but will not
be discussed here.

Finally, receive shadow buffers must be configured. They play a special role as they
are not user-accessible like the three buffers introduced before. These buffers are
used internally for the reception of frames from the two channels. As soon as a
frame has been received correctly, it is transferred from the receive shadow buffer to
the individual message buffer that has been assigned to that frame. Configuration is
done using the struct Fr_receive_shadow_buffers_config_type. It is important
to notice that receive shadow buffers must be configured to ensure proper operation
of the node.

As soon as a configuration for each message buffer is ready in memory, an array of
Fr_buffer_info_type structs must be created that each contains the buffer-type,
a pointer to the configuration-struct as well as the index of the message buffer that
should be used as the buffer. Here again, it is important to note that double transmit
buffers need two buffer places, thus the message buffer index for the next buffer must
be increased by two instead of one.

Finally – to make things even more complicated – another array of types Fr_index_
selector_type needs to be created that contains only integers that represent indexes
to the Fr_buffer_info_type array. Each buffer that is selected using the selector
will be used later. In the case of the FlexRay 4 Linux integration only buffers
that are really needed are added to the Fr_buffer_info_type array, so that the
Fr_index_selector_type array basically contains indexes for all buffers.

It is important to note, that the MFR4310 organizes the message buffers in two
memory segments. Each memory segment can be configured for a specific payload
size. The payload sizes for both segments can be set at configuration time of the
controller. It is of course possible to use message buffers for less payload than the
maximum payload size that has been set for the specific segment. Buffer memory
will be wasted by doing so. The number of the segment a message buffer belongs to
can be determined by looking at the message buffer index. The last message buffer
index in the first segment is specified in the Fr_HW_config_type struct, all indexes
beyond that index will belong to the seconds segment, others to the first.

3.5.2 Cycle Filter Configuration

The MFR4310 provides a cycle filter that can be used for transmit as well as for
receive buffers. The configuration is done using three parameters. The first is just
a boolean that switches the filter on or off, the other two are called filter value and
filter mask . Filter value and filter mask are each 6 bit wide (as the cycle counter).
If the filter is enabled the following condition must hold for the filter to match:3

cycle ∧mask = value ∧mask (3.1)

3Note that the meaning of the logical-and “∧” has been extended to bitvectors instead of single
bits for the equation.
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Considering a mask of 0x1 = 000001b and a value of 0x0 = 000000b, then the left
side of Equation 3.1 will be 000001b iff the cycle is odd. The right side is always
000000b as 0x0 ∧ 0x1 = 0x0. As a result, this filter will only match for even cycles.
When a value of 0x1 = 000001b is chosen, the filter matches only the odd cycles.
Some more examples of using the cycle filter can be found in Table 3.1.

Cycle
M/V M/V M/V M/V M/V M/V M/V M/V
0x1 /
0x0

0x1 /
0x1

0x2 /
0x0

0x2 /
0x2

0x3 /
0x0

0x3 /
0x1

0x3 /
0x2

0x3 /
0x3

0 X X X
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X
10 X X X
11 X X X
12 X X X
13 X X X
14 X X X
15 X X X

Table 3.1: Filter matching examples, M/V denotes mask and value pairs

3.5.3 Transmitting and Receiving

Transmitting and receiving is done using the previously configured message buffers.
Unfortunately there seems to be no way to transmit/receive by slot ID in the driver.
Transmitting and receiving can only be done by specifying the correct buffer index
that has been assigned before. To transmit or receive by slot ID nonetheless, a
mapping between slot ID and message buffer is needed. A simple lookup function
takes care of the mapping by searching the Fr_buffer_info_type array, which
fortunately contains all the needed information.



4. FlexRay 4 Linux

When working with FlexRay clusters and developing applications for it, a PC inter-
face is often needed to interact with single nodes or as valuable tool for debugging
purposes. As already mentioned in the introduction, there exist some commercial
solutions to interface FlexRay systems using USB or PCI1. These solutions are very
powerful but also quite expensive and have limited driver support. Special features
of these solutions include the ability to monitor even the startup phase were no
synchronization has been established yet [Vector 08].

To interface FlexRay using a Linux personal computer, one of the experimental
boards will be connected to it over a serial connection, see Figure 4.1. From now on,
the Linux side will be called host while the experimental board will be called the
FlexRay interface. The serial connection can be implemented using several under-
lying protocols. For the first experiments, CAN has been used, because the experi-
mental board offers CAN support. Unfortunately, a CAN frame can only transmit
up to 8 bytes payload and CAN offers no full-duplex2 transmissions, so it has been
dropped very soon (see also the conclusions in chapter 5 for more information about
the problems with CAN). Instead the Universal Asynchronous receiver/transmitter
(UART) has been chosen as the serial connection.

4.1 FlexRay over Serial Links
To encapsulate the FlexRay protocol over serial links such as USB or serial ports,
many different operations must be put into a serializable format. This is realized
using a simple packet-based protocol that will now be explained.

4.1.1 Packet Format

The protocol uses a specific packet for each operation, such as“start communication”
or “transmit data”. These packets can then be transmitted byte per byte over a

1E.g. Vector VN3600 or Vector VN3300
2A full-duplex system can simultaneously send and receive on a logical communication channel,

this can be achieved e.g. by using two physical wires, one for transmission and one for reception or
by the means of multiplexing methods such as Time-Division or Frequency-Division Multiplexing
(TDM/FDM).
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Linux
Computer

Experimental
Boardserial connection

A

B

Figure 4.1: Overview of the FlexRay 4 Linux interface

serial link. Each packet carries a header that contains a one-byte field that is used
to encode the type of operation as well as optional arguments, see Figure 4.2. The
packets do not carry a length field, because the length can be calculated as soon as
the operation type and, in case of a data packet, the length-field of the encapsulated
FlexRay frame is known.

Operation (8 bit) Arguments (optional, size variable)

Figure 4.2: Format of a generic FlexRay over Serial packet

There exist a number of packet types to perform several operations. The ones that
do not need additional arguments look like in Figure 4.3 and include the following
operations:

INIT The init operation instructs the FlexRay interface to reset and initialize itself.

START_COMMUNICATION The start-communication operation instructs the FlexRay
interface to enter the startup state, this can be done after the configuration
mode has been left.

STOP_COMMUNICATION The stop-communication operations instructs the FlexRay in-
terface to stop the FlexRay communication.

WAKEUP The wakeup operation instructs the FlexRay interface to send a wakeup
pattern to the FlexRay cluster.

ENTER_CONFIG_MODE The enter-config-mode operation instructs the FlexRay inter-
face to enter the configuration mode, this must be done prior to setting any
configuration.

LEAVE_CONFIG_MODE The leave-config-mode operation instructs the FlexRay inter-
face to leave the configuration mode. This operation should be executed as
soon as everything has been configured.

The other operations of the protocol need additional arguments, e.g. a data packet
must carry a FlexRay frame as its argument.
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Operation (8 bit)

Figure 4.3: Format of the FlexRay over Serial packet without arguments, it just contains
the operation header-field.

SET_LOW_LEVEL_CONFIG The set-low-level-configuration operation is used to set the
FlexRay configuration parameters at the interface. As an argument, a struct
containing all parameters is included (see Figure 4.4).

POC_STATE The poc-state operation is sent from the interface to the host to propa-
gate changes in the protocol state. The current protocol state is contained as
an argument (see Figure 4.5).

ADD_TX_BUFFER, ADD_RX_BUFFER The add-TX-buffer or add-RX-buffer operations
are used by the host to configure message buffers (for transmission or recep-
tion) on the interface. The argument is a struct containing the TX-buffer-
configuration or the RX-buffer-configuration, respectively (see Figure 4.6).

DATA Packets with the data-operation are sent by both the host and the interface.
Their purpose is to encapsulate whole FlexRay frames that should be sent out
to the cluster or that have been received from the cluster (see Figure 4.7).

Operation (8 bit) Low-Level Conf. (72 bit)

Figure 4.4: Format of the FlexRay over Serial Low-Level configuration packet, operation
is always set to FR_SERIAL_PACKET_OPERATION_SET_LOW_LEVEL_CONFIG for these packets.

Operation (8 bit) POC-State (8 bit)

Figure 4.5: Format of the FlexRay over Serial POC-state packet, operation is always set
to FR_SERIAL_PACKET_OPERATION_POC_STATE for these packets.

4.1.2 FlexRay over CAN

As mentioned before, CAN has first been used to transmit the FlexRay over serial
packets just introduced. Unfortunately CAN can only transmit up to 8 bytes of
payload per frame, but the maximum packet size of the FlexRay over serial packets
is much bigger (in case of a DATA packet, more than 256 bytes might have to be
transmitted). To overcome this problem, a segmentation and reassembly layer has
been developed to segment a FlexRay over serial packet into several CAN frames.
Assuming the maximum size of a FlexRay frame (including some more than the 256
data bytes) is 512 bytes, a sequence number of 9 bit length is needed to enumerate
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Operation (8 bit) TX/RX Buffer Conf.. (13/7 bit)

Figure 4.6: Format of the FlexRay over Serial Low-Level configuration packet, operation
is always set to FR_SERIAL_PACKET_OPERATION_ADD_TX_BUFFER or FR_SERIAL_PACKET_
OPERATION_ADD_RX_BUFFER for these packets.

Operation (8 bit) FlexRay Frame (size variable)

Figure 4.7: Format of the FlexRay over Serial data packet, data packets are used to
encapsulate FlexRay frames. Operation is always set to FR_SERIAL_PACKET_OPERATION_
DATA for these packets. FlexRay Frame is of type flexray_frame.

all segments. To make things more easy and efficient, 16 bits (2 bytes) are used,
which means that with the segment number included, only 6 bytes payload are left
per CAN frame.

The worst problem with FlexRay over CAN however occurred as soon as both host
and interface tried so sent data simultaneously on the CAN bus. Thanks to the
access schema used for CAN3 no collisions occurred, but one of the bus participants
overruled the other. This has lead to lost CAN frames that made the reassembly
of longer FlexRay over serial packets impossible, due to a missing retransmission
mechanism. Instead of implementing a protocol that overcomes these problems, a
better-suited underlying communication system – the UART – has been used.

4.1.3 FlexRay over UART

If the UART is chosen as the low level communication medium, data units are
typically chunks of 8 bits (1 byte). The FlexRay over Serial packets just discussed
consist of up to several hundred bytes, but now have to be transmitted byte-per-
byte. Because a simple two-wire UART cannot signal packet starts using dedicated
wires, in-band signaling is needed to properly separate packets from each other. This
is done by encapsulating the FlexRay over Serial packets into FlexRay over UART
frames. Those frames contain a 16 bit length field, the payload (which is always a
FlexRay over Serial packet) and a checksum to validate the payload, see Figure 4.8.
The start of a new frame is signaled using a reserved START-byte. Whenever a
START-byte is encountered in the data-stream, this START-byte needs to be escaped
by an escape byte ESC followed by the byte ESC_START. Whenever a ESC-byte in
found in the data-stream, it will be replaced by ESC, followed by ESC_ESC. At the
receiver-side, the START-byte can then be used to detect the beginning of a frame.
Before passing the data to the upper layers, the receiver has to recover the escaped
bytes. To sum up:

• START marks the beginning of a frame

• START in the data is escaped as ESC, ESC_START

3CSMA/CA - Carrier Sense Multiple Access with Collision Avoidance
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• ESC in the data is escaped as ESC, ESC_ESC

Length (16 bit) Payload (0...x Bytes) CRC (16 bit)

Figure 4.8: Format of the FlexRay over UART frames

4.2 FlexRay Serial Interface

This section describes how the software on the experimental board, that serves as the
FlexRay interface for the personal computer, works. On the one side, the interface
receives FlexRay over Serial packets from the host over the UART into a receive
buffer. The incoming packets are then processed and the operations according to
the packet header is executed. For example, if a configuration packet is received, the
interface will configure the FlexRay Communication Controller accordingly. If a data
packet is received, the FlexRay frame is decapsulated and put into the corresponding
message buffer.

On the other side, when a FlexRay frame is received from the FlexRay cluster, it
is encapsulated into a FlexRay over Serial packet and the packet then put into the
serial transmission buffer from which it is sent to the host. Also, when protocol state
changes occur, the new protocol state is put into a POC-state packet and sent to
the host.

4.3 An Introduction to the Linux Kernel

To goal of this section is not to give an explanation about how operating systems
work. It shows merely how some typical functionality is implemented in the Linux
Kernel, so that the reader is able to understand the FlexRay 4 Linux implementation
in the next sections.

4.3.1 Loadable Modules

If configured and compiled with the option CONFIG_MODULES, the Linux Kernel can
dynamically link additional code during runtime. This code is available in the form
of Kernel modules. Modules can provide almost any functionality, they can for
example add new network protocols or device drivers for new network interfaces at
runtime. Modules can be loaded using the commands insmod or modprobe, the first
one needs a path to the module while the latter searches in well-known paths for
the module and can also automatically load dependencies4. The command rmmod is
used to unload modules, which can be done as long as they are not currently in use.

When modules are loaded, a function declared with module_init() is executed
where e.g. data-structures can be initialized. When the module is unloaded, the
function passed to module_exit() is executed, here cleanup operations, such as
freeing allocated memory can be performed.

4Other modules that are required for the current module to work.
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4.3.2 Linux Network Interfaces and Sockets

Linux supports a lot of different network interfaces, including typical every-day hard-
ware such as Ethernet adapters, wireless LAN cards, but also virtual interfaces like
the TUN/TAP devices that are e.g. used in Virtual Private Network solutions. Ev-
ery network device can be identified by the user by its name, for Ethernet this is
eth0 for the first Ethernet device, eth1 for the second, . . . . For wireless LAN, usu-
ally wlanX and for tun-devices tunX (with X ∈ N0) is used. Every network interface
in the system internally gets a number (called the interface index – ifindex) that
can be used within the kernel (or even in userspace as can be seen later) to uniquely
identify it.

Network interfaces can be configured using the tool ifconfig. For devices that can
handle the Internet Protocol it can be used to set e.g. the IP-address. Common for
all devices is the ability to bring a network interface up or down, using the command
ifconfig devX up respectively ifconfig devX down.

Userspace applications cannot use the network interfaces directly. There is no way to
“open” e.g. eth0 like for example a character device. Instead, applications must cre-
ate sockets using the socket(domain, type, protocol) call. The arguments spec-
ify for what type of protocol the socket is created. By using socket(PF_INET, SOCK_

STREAM, IPPROTO_TCP), a typical TCP/IP socket is allocated while socket(PF_

INET, SOCK_DGRAM, IPPROTO_UDP) creates a UDP/IP socket. The protocol-family
is the same in both cases, PF_INET for IPv4 traffic. By replacing the protocol-family
with PF_INET6 IPv6 connections can be established.

There are several operations that can be done with sockets. Two of them are very
important, send() and recv(). They are used for sending or receiving data to or
from the socket. By using send(), data is passed over to Kernel space and by using
recv() data from Kernel space is passed into userspace. Another method to interact
with sockets or the network devices that are “behind” the sockets is by using specific
ioctl() commands, see the next section.

4.3.3 The ioctl() Syscall

The ioctl() call can be used to do dozens of operations with devices or also sockets.
Almost anything that cannot be done semantically correct with recv() or send()

calls can probably be done with ioctl()s. Consider for example the task of setting
the baudrate for a serial device. Theoretically this could somehow be encoded into
a send() call, but that would easily cause trouble and confusion, because setting
the baudrate has nothing to do with “sending” on a serial port. Similar problems
arise for the FlexRay network device. Many tasks have to be accomplished that are
neighter sending nor receiving, such as configuring the Communication Controller,
reading POC-states or stopping the communication.

The ioctl() requests are fairly easy to understand. Each request consist of a
request-ID to distinguish between different request-types and a void *5 pointer to
some memory, usually an application-specific struct. Because a pointer (call-by-
reference) is used, ioctl() is basically bidirectional, there exists requests that only

5Actually, it is not a void pointer, which has traditional reasons, but one could imagine it to
be one.
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transfer data from user to kernel space, but also some that transfer data from Kernel
to user space or even some that do both at a time.

4.3.4 The select() Syscall

When it comes to non-blocking input/output operations, the select() call comes
handy. It allows to wait for input to become ready, the ability to write or for
exceptional events on several file-descriptors6 at the same time. Optionally a timeout
for the wait-operation can be specified.

4.4 FlexRay 4 Linux

This section will give an overview of the actual Linux implementation of the FlexRay
interface. The implementation consists of four Kernel modules, and some userspace
tools. The module flexray provides the PF_FLEXRAY protocol family and flexray-

raw implements raw FlexRay sockets. These can be looked upon as the network
backend. The modules flexray-serial and flexray-over-uart handle the con-
nection of the hardware to the network backend. The latter of the modules handles
the FlexRay over Serial and over UART protocols that have been described before.

Note that the information is probably only valid for – at the time of writing – current
Linux versions (e.g. 2.6.28). Many parts of the Kernel API change from time to time
so that this information here might easily be outdated. A great overview about Linux
Kernel programming in general gives [Corbet 05]7, for Linux networking internals,
see [Benvenuti 05].

4.4.1 The PF_FLEXRAY Protocol Family

FlexRay communication for Linux is implemented as a new network protocol. A
network protocol matches the nature of a communication system such as FlexRay
better than e.g. a character driver.The advantages of doing so a numerous – straight-
forwarded calls such as socket(), recv() or send() can be used to establish com-
munication and the whole interface can easily be used by several users or processes.

Linux provides several protocol families that lets the user create specific sockets
to communicate using a large variety of protocols. Well known protocols include
PF_INET, PF_INET6 which provide sockets for the Internet Protocol (IP) version 4
respectively 6. There are also less known protocol families, e.g. PF_BLUETOOTH which
implements important protocols for the Linux Bluetooth stack BlueZ or the quite
interesting protocol family for the Controller Area Network (CAN) named PF_CAN.
All supported protocol families are defined in linux/socket.h.

Defining the protocol in linux/socket.h is of course not enough, the protocol family
must also be implemented, e.g. in form of a Kernel module. When such a Kernel
module is loaded it must register the protocol family it implements at the Linux
networking core. This is done using the API function sock_register (see net/

socket.c). This function takes a pointer to a struct net_proto_family which

6Many things in Linux are file-descriptors. The most obvious one is a file that has been opened
using the open()-call, but also sockets are file-descriptors in userspace.

7This book is also available online under Creative Commons License.
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contains the number of the protocol family and a pointer to a function to create
protocol specific sockets.

A typical protocol family registration could look like in Listing 4.1.

Listing 4.1: Registering a protocol family

/* the description of the protocol */

static struct net_proto_family fr_family_ops = {

/* the protocol family, see linux/socket.h */

.family = PF_FLEXRAY,

5 /* a pointer to a function to create sockets */

.create = fr_create,

/* the "owner" of this protocol */

.owner = THIS_MODULE,

};

10

/* register it at the socket subsystem */

sock_register(&fr_family_ops);

This is how the output looks when the protocol is registered and unregistered by
loading and unloading the module:

# insmod flexray.ko

flexray: Initializing FlexRay4Linux protocol stack

NET: Registered protocol family 36

# rmmod flexray

NET: Unregistered protocol family 36

flexray: Successfully unloaded.

In order to be able to correctly transfer data between the protocol family and the
network devices, that work with the given protocol family, an “Ethernet” protocol
ID must be registered in linux/if_ether.h. This is named ETH_P_FLEXRAY. The
module flexray uses this ID to pass FlexRay frames that need to be sent to the
FlexRay network drivers.

4.4.2 Raw FR_RAW Sockets

Once the protocol family has been registered at the socket subsystem, single proto-
cols for this protocol family can register themselves in turn at the protocol family.

Particularly useful protocols are RAW protocols that can be used for debugging
because they usually pass more data to the user than necessary during normal com-
munication. The FlexRay subsystem also provides a raw protocol named FR_RAW

that can be used to receive and send on all registered FlexRay slots using a spe-
cially crafted struct. This struct does not only carry the frame payload, but also
administrative information, see subsubsection 4.4.5.1 for details.

The FlexRay core (module flexray) exports the symbol fr_proto_register which
must be used to register FlexRay protocols, see Listing 4.2 for an example on how
to register the raw protocol.
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Listing 4.2: Registering a FlexRay protocol

/**

* description of the FR_RAW protocol

*/

static struct fr_proto raw_fr_proto __read_mostly = {

5 /* type argument in socket() syscall */

.type = SOCK_RAW,

/* protocol number in socket() syscall */

.protocol = FR_RAW,

/* capability needed to open the socket, -1: no restriction */

10 .capability = -1,

/* pointer to struct proto_ops for sock->ops */

.ops = &raw_ops,

/* pointer to struct proto structure */

.prot = &raw_proto,

15 };

/* try to register the FR_RAW protocol */

fr_proto_register(&raw_fr_proto);

4.4.3 FlexRay Network-Devices

All FlexRay network devices have their interface hardware type set to ARPHDR_

FLEXRAY, so that they can be identified as FlexRay devices. This identifier is defined
in linux/if_arp.h.

When a FlexRay network device receives a frame, it puts it into a socket buffer
struct sk_buff, sets the protocol type to ETH_P_FLEXRAY and pushes that buffer
to the network subsystem by calling netif_rx. The buffer is then passed to the
FlexRay protocol family and from there to each registered raw FlexRay socket.

When a FlexRay frame should be transmitted on a raw FlexRay socket, it is first
passed to the FlexRay protocol family from where it will be passed to the network
subsystem which in turn gives the frame to the appropriate network device code.

The next section will describe how the flexray-serial module, a FlexRay network
device driver is implemented with the help of a Serial Line Discipline.

4.4.4 Serial Line Discipline

When the FlexRay controller is connected to a serial port (a so-called “tty”) of the
Linux system it is usually not available for use within a Kernel driver but only for
userspace, using the corresponding device-file (e.g. /dev/ttyS0 for the first serial
port). Note that this does not only apply to the classic RS232-style serial ports
still found on older hardware, but also for other serial devices such as USB-Serial
adapters (/dev/ttyUSBx), or even cellphones (/dev/ttyACMx). Luckily, a mecha-
nism called Serial Line Discipline is available in the Linux Kernel that allows to
virtually “connect” these, usually only userspace accessible devices to kernel drivers.
A prominent example for a line discipline is the Serial Line Internet Protocol (SLIP)
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[Romkey 88] discipline (N_SLIP) which is used to transfer IP data over serial links8.
The SLIP-implementation takes serial data from the tty, extracts the IP packets and
output them on a network interface (e.g. slip0). The other direction works simi-
larly – the modules takes incoming IP packets from the network device, transforms
them into a SLIP compatible data stream and outputs this stream on the tty.

Note the similarity of the problem of the SLIP implementation and the flexray-

serial module. Both have to transfer data between a tty and a network device. The
slip module for IP packets and the flexray-serial module for FlexRay frames.

So obviously, a line discipline is needed to connect FlexRay controllers over serial
ports/ttys. The line discipline “Serial FlexRay” has been defined as N_SLFLEXRAY

in linux/tty.h. The module flexray-serial registers the line discipline at ini-
tialization time, see Listing 4.3. The tty_ldisc_ops struct is used to set functions
that are called by the kernel in case of operations on the discipline such as opening
or closing the it or when data is available on the tty.

Listing 4.3: Registering the FlexRay line discipline

/**

* serial line discipline options

*/

static struct tty_ldisc_ops fr_tty_ldisc = {

5 /* the "owner" of the ldisc */

.owner = THIS_MODULE,

/* magic number */

.magic = TTY_LDISC_MAGIC,

/* name of the discipline */

10 .name = "flexray over serial",

/* called from above when ldisc is opened */

.open = fr_tty_open,

/* called from above when ldisc is closed */

.close = fr_tty_close,

15 /* called from above when ioctl() is issued */

.ioctl = fr_tty_ioctl,

/* called from tty driver when data is available */

.receive_buf = fr_tty_receive_buf,

/* called from tty driver when data can be send */

20 .write_wakeup = fr_tty_write_wakeup,

};

/* register the serial line discipline */

tty_register_ldisc(N_SLFLEXRAY, &fr_tty_ldisc);

So far, only the kernel side of serial line disciplines has been discussed. However, line
disciplines always need the userspace to be involved. As stated before, by default ttys
are available to the userspace only, so the userspace has to explicitly pass the tty to
kernel control by setting the appropriate line discipline for it. This can be done using

8Note that today, SLIP has been widely replaced by the Point-to-Point Protocol (PPP)
[Simpson 94], e.g. for analog modem or DSL connections
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a special ioctl request called TIOCSETD. This process is usually called “attaching”
the tty to some kernel part, hence the userspace programs that are designed for this
task are usually suffixed attach, e.g. for the already mentioned SLIP the program is
called slattach and for FlexRay it will be called frattach. How such an program
would use the ioctl can be seen in Listing 4.4.

Listing 4.4: Opening a line discipline from userspace (attaching)

int i = N_SLFLEXRAY;

if(ioctl(fd, TIOCSETD, &i) == -1) {

perror("ioctl (set line discipline)");

exit(1);

5 }

4.4.5 Important Data Types

4.4.5.1 struct flexray_frame

The flexray_frame struct is used to describe FlexRay frames that have been re-
ceived from the FlexRay cluster or that are to be sent out to the cluster. This
struct is used at two places: at the userspace/Kernel interface when sending/receiv-
ing frames using raw FlexRay sockets as well as in the FlexRay over Serial data
packet, when encapsulating FlexRay frames over serial links. See Listing 4.5 for the
definition of the struct.

Listing 4.5: The flexray_frame struct

/**

* This type describes a FlexRay frame.

*/

struct flexray_frame {

5

/** ID of the slot the FlexRay frame has been sent in

* or should be sent in */

u16 slot_id;

10 /** number of the cycle the FlexRay frame has been sent in */

u8 cycle;

/** length of the data in 16bit words (not bytes!) */

u8 length;

15

/** the status of the slot the frame was been received in */

u16 slot_status;

/** the payload */

20 u16 data[127]; /* this must be the last field in this struct */

} __attribute__((__packed__));
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Note the field slot_status in the struct. This field can be used to effectively debug
a running FlexRay cluster, because valuable information can be extracted. Several
flags allow to detect if there were errors such as CRC missmatches or slot boundary
violations on one of the channels. The flags are documented in the source code.

4.4.6 Configuring the FlexRay Device

The FlexRay devices can be configured using the already introduced ioctl()s. The
ioctl() is issued to an open PF_FLEXRAY socket. Usually ioctls on sockets act just
on the socket itself, but special requests have been allocated to control the underlying
network device instead of the socket itself. These so-called “device private” requests
are numbered from SIOCDEVPRIVATE to SIOCDEVPRIVATE+15.

The FlexRay 4 Linux framework only uses one ioctl-request which is called SIOCDEVFLEXRAY.
This constant is defined as the first possible device private request (SIOCDEVPRIVATE).
To distinguish between several requests to the FlexRay device, a special data struc-
ture named flexray_conf_ioctl is passed to the driver. This data structure con-
tains a command-field that is used to encode different operations, e.g. initialization
of the controller or entering the configuration mode. For more complicated requests
that need to carry additional data, like configuration-descriptions, a pointer to more
data is also included, see Listing 4.6.

Listing 4.6: FlexRay network device ioctls

#define SIOCDEVFLEXRAY SIOCDEVPRIVATE

struct flexray_conf_ioctl

{

5 /** see below */

u8 cmd;

/** pointer to additional data */

void *data;

10 };

#define FLEXRAY_INIT 0x1

#define FLEXRAY_SET_LOW_LEVEL_CONFIG 0x2

[...]

#define FLEXRAY_GET_POC_STATE 0xA

4.4.7 Sending and Receiving Frames

Sending and receiving frames works like sending and receiving on every Linux socket.
See Listing 4.7 for a simple example.

Listing 4.7: Sending and receiving FlexRay frames via socket

/** strcut used to store data

struct flexray_frame frame;

/* receive into frame */
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5 recv(socket, &frame, sizeof(frame), 0);

/* put data into frame and send */

frame.id = 4;

frame.length = 1;

10 frame.data[0] = 0x55;

send(socket, &frame, sizeof(frame), 0);

4.4.8 Userspace Tools

During the implementation of the FlexRay functionality in Kernel space, some useful
userspace tools emerged that can simplify the work with FlexRay and help debug a
FlexRay cluster. Two of the these tools – the userspace library libflexray and the
FlexRay sniffer flexdump will now be explained.

4.4.8.1 Userspace Library

To simplify the use of FlexRay under Linux, a simple userspace library has been
created that can be used to hide the syscalls behind a C-interface. The library,
named libflexray, has been designed to be dynamically linked to applications.

All ioctl() calls are hidden behind functions, such as flexray_init, flexray_

set_low_level_config or flexray_start_communication. Receiving and Send-
ing frames is hidden behind the functions flexray_send_frame and flexray_recv_

frame.

4.4.8.2 FlexRay Sniffer: flexdump

The program flexdump is a simple sniffer, similar to the universal network sniffer
tcpdump9. flexdump opens a raw FlexRay socket at startup and then just listens
for changes in POC-state as well as for FlexRay frames. It then decodes received
frames and outputs useful information such as:

• Size of the payload

• Slot-Number

• Cycle-Counter

• Flags (Valid, Nullframe, Startup, ...)

• Payload

Please note, that tcpdump itself can also be used to sniff on the FlexRay interface,
e.g. by invoking it with tcpdump -n -i flexray0. This works, because tcpdump

uses the PF_PACKET protocol family which registers Ethernet protocol id ETH_P_ALL

to receive all possible network traffic on the machine. Because tcpdump does not
know about the FlexRay (at least at the time of writing) it can of course not decode
the frames like flexdump does.

9http://www.tcpdump.org/

http://www.tcpdump.org/
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4.5 Demo Application

To proof that the FlexRay interface and the Linux driver framework are working
correctly, a demo application has been set up. This applications will also be used to
experimentally evaluate some of the special features of FlexRay, namely the failure
safety and the easy transmission of periodic and sporadic messages.

4.5.1 Overview

The demo applications consists of two major parts, a FlexRay controller connected
to a Linux computer (node 1) and a another FlexRay controller in an embedded
system (node 2). The embedded system has some components attached to it, a
motor driver with a DC motor, a LED, a display and a switch. The embedded
system uses the same experimental board as the FlexRay adapter for the computer,
that has been introduced in chapter 3.

Both nodes are connected using a standard shielded twisted pair cable of category 5e
and approximately 1 meter length. Both FlexRay channels (A and B) are available
through the cable with the possibility to manually interrupt one of the channels to
demonstrate the failure safety of FlexRay.

4.5.2 Embedded System

The embedded system uses Pulse Width Modulation (PWM) to control the speed
of the motor, the direction can also be changed. To achieve this, a 16 bit word is
used. The highest bit specifies the direction of the motor and the lower 15 bits carry
the PWM value between 0 and 32767. One General Purpose IO (GPIO) pin serves
as the PWM source, two more pins are used to set the direction of the motor.

The LED and the switch are connected to two GPIO pins of the DSP. The switch
is pulled-low by a 22kΩ resistor, pressing the switch causes the pin to be held on
high level. A 2× 20 character ASCII display with a HD44780-compatible controller
is attached to the DSP using six more GPIO pins. It is interfaced in 4-bit mode
and therefore it only needs 4 data lines as well as a register select and a strobe line.
Figure 4.9 shows a photo of the embedded system that serves as the demo node.

4.5.3 Linux Computer

The Linux computer is running Linux 2.6.28.7 with all the necessary FlexRay patches
applied. The serial FlexRay adapter is connected to it using a USB-Serial adapter
of type Prolific PL2303.

A small graphical application, programmed in C using the GTK++-Toolkit, serves
as an interface to the embedded system. The GUI shows the current POC-state
and the value of the switch. A slider can be used to control the motor speed and
direction, a button is used to switch the LED on or off. Text that should appear on
the display of the embedded system can be entered into a text field. See Figure 4.10
for a screenshot.
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Figure 4.9: Image of the demo node

4.5.4 FlexRay Configuration

There are really a lot of parameters that configure a FlexRay cluster, compared
to classic bus systems. These options make out a lot of the flexibility of FlexRay
but are also quite confusing and hard to understand. This section cannot provide
complete instructions on how to configure a FlexRay system, but it tries to give
an introduction. For a deeper understanding, please refer to [Rausch 07], especially
chapter 6.

4.5.4.1 Protocol Parameters

Here is the (non-complete) list of protocol parameter that are used on the demo
cluster:

gColdStartAttempts = 10 The nodes will try up to 10 attempts to cold-start the
cluster

gdActionPointOffset = 3 Send-start for static frames is 3 macroticks after begin-
ning of slot

gdCASRxLowMax = 83 Maximum length of a Collision Avoidance Symbol (CAS) is
83 bit times.

gdDynamicSlotIdlePhase = 0 Length of the idle phase during a dynamic slot is 0
minislots.

gdMinislot = 40 The duration of a minislot is 40 macroticks

gdMiniSlotActionPointOffset = 3 Send-start for dynamic frames in 3 macroticks
after beginning of slot

gdStaticSlot = 50 The duration of a static slot is 50 macroticks

gdSymbolWindow = 13 The duration of the symbol window is 13 macroticks
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Figure 4.10: Screenshot of the GUI running on the Linux system

gdTSSTransmitter = 11 The duration of the Transmission Start Sequence is 11 bit
times

gdWakeupSymbolRXIdle = 59 The minimal duration of the idle phase during a
wakeup symbol at the receiver is 59 bit times

gdWakeupSymbolRXLow = 50 The minmal duration of the low phase during a wakeup
symbol at the receiver is 50 bit times

gdWakeupSymbolRXWindow = 301 The width of the window to receive two wakeup
symbols is 301 bit times

gdWakeupSymbolTXIdle = 180 The duration of the idle phase of a sent wakeup
symbol is 180 bit times

gdWakeupSymbolTXLow = 180 The duration of the low phase of a sent wakeup sym-
bol is 180 bit times

gListenNoise = 2 The upper limit for the startup/wakeup listen timeout is 2

gMacroPerCycle = 5000 A FlexRay cycle is 5000 macroticks long

gMaxWithoutClockCorrectionPassive = 10 Node will go into passive state after
10 · 2 = 20 cycles without clock synchronization

gMaxWithoutClockCorrectionFatal = 14 Node will halt after 14 · 2 = 28 cycles
without clock synchronization

gNumberOfMinislots = 22 There are 22 minislots in the dynamic segment

gNumberOfStaticSlots = 60 There are 60 slots in the static segment
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gOffsetCorrectionStart = 4920 Start of offset correction in Network Idle Time
is 4920 macroticks away from start of cycle

gPayloadLengthStatic = 16 The payload length in the static segment is 16·2 = 32
bytes

gSyncNodeMax = 5 The maximum number of synchronization nodes (i.e. nodes that
send Sync Frames) is 5

gNetworkManagementVectorLength = 2 The Network Management Vector is 2 bytes
long

pAllowHaltDueToClock = false No direct transitions to POC:halt due to synchro-
nization problems

pAllowPassiveToActive = 20 The number of valid cycles to translate from POC:normal

passive to POC:normal active is 20 · 2 = 40

pChannels = CHANNEL_AB The node is connected to both channels

pdListenTimeout = 401202 The time to wait before initiating wakeup/startup is
401202 microticks

pdMaxDrift = 601 The maximum clock drift between two unsynchronized nodes
over one communication cycle is 601 microticks

pExternOffsetCorrection = 0 The external offset correction is not used

pExternRateCorrection = 0 The external rate correction is not used

pKeySlotId = 1 The keyslot of this node (the Linux side in this example) is slot 1

pKeySlotUsedForStartup = true The keyslot is used for the startup of the cluster

pKeySlotUsedForSync = true The keyslot is used for clock synchronization

pKeySlotHeaderCRC = 0xf2 The header checksum of the keyslot is 0x2f, this must
be calculated using pKeySlotId, gPayloadLengthStatic, pKeySlotUsedForStartup
and pKeySlotUsedForSync

pLatestTx = 21 The number of the last minislot where a new transmission may
begin in the dynamic segment is 21

pMicroPerCycle = 200000 There are 200000 microticks in one cycle

pOffsetCorrectionOut = 1201 The maximum allowed offset correction is 1201 mi-
croticks

pRateCorrectionOut = 600 The maximum allowed rate correction is 600 microticks

pSingleSlotEnabled = false The Single Slot Mode, where only one slot is used,
is disabled
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pWakeupChannel = CHAN_A This node sends wakeup patterns on channel A

pWakeupPattern = 16 The wakeup symbol is repeated 16 times

pMicroPerMacroNom = 40 The number of microticks per macrotick that all imple-
mentations must support is 40

pPayloadLengthDynMax = 64 The maximum payload length for dynamic slots is
64 · 2 = 128 bytes

4.5.4.2 Startup Configuration

Both nodes are configured as coldstarters, because at least two nodes must be con-
figured as coldstarters to successfully start a FlexRay cluster. Node 1 has its keyslot
set to 1 while node 2 uses slot 2 as keyslot. Both nodes attempt up to 20 coldstarts
(see protocol parameter gColdStartAttempts = 20).

4.5.4.3 Static Segment Configuration

There are 60 static slots available in each communication cycle, see protocol pa-
rameter gNumberOfStaticSlots = 60. Node 1 sends in slot 1 and 3 of the static
segment. Slot 1 is used as keyslot and to transmit the motor speed, the speed gets
transmitted periodically in every cycle (state driven transmission) and for higher
reliability on both channels. Slot 3 carries the value of the LED, the transmission is
also state driven but only channel A is used.

Node 2 only sends in slot 2, which is also its keyslot. This slot carries the value of
the switch, that is transmitted state driven and redundantly on both channels. See
Figure 4.11 for an overview of the static segment.
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node 1
motor

node 1
motor

node 2
switch

node 2
switch

node 1
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node 2
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Figure 4.11: Assignment of static and dynamic slots for the demo cluster

4.5.4.4 Dynamic Segment Configuration

The number of slots in the dynamic segment cannot be calculated as easy as for the
static segment, as dynamic slots may have varying sizes. The first dynamic slot is
numbered 61, because the last static slot has the id 60 (gNumberOfStaticSlots =

60).
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In the dynamic slot 61, node 1 sends up to 128 bytes of data on channel B. The
data represents text that should be written to the display. Node 2 uses slot 62 on
channel A to echo the data that have been received in slot 61 back to node 1. The
transmission buffers for slot 61 and slot 62 are both set to event transmission, so
that the slots are only occupied when data is available.

4.5.5 Functional Description

When the POC-state changes, the GUI gets updated to reflect the changes. The
user can choose speed and direction of the motor and the status of the LED. Speed
and direction are sent periodically in slot 1 by the FlexRay controller on the Linux
side, the LED value in slot 3. As soon as a frame containing the values is properly
received, they are propagated to the PWM subsystem or the LED respectively.

When the time has come for the embedded system to send in slot 2, it queries the pin
status of the switch and puts the value into the payload. As soon as Linux system
receives the switch data it updates the GUI to visualize the state of the switch.

If the user enters some text and presses enter, the text gets sent in the dynamic
segment to the embedded system, which in turn puts the text on the display.

4.5.6 Experimental Results

Now, one question should come into mind – what happens when one FlexRay channel
fails, let it be channel A or channel B? Looking at Figure 4.11, the theoretical results
can be deduced:

• Startup and continued synchronization of the cluster will still be possible,
because the startup and sync frames are transmitted redundantly on both
channels

• The motor-values are transmitted on both channels so it can still be controlled

• The switch-value is also transmitted on channel A and B so the switch could
serve as an emergency shutdown

• The LED can no longer be controlled when channel A is interrupted, it should
not be a safety-critical device

• Displayed messages get no longer echoed when channel A is interrupted

• The display can no longer display new messages when channel B is interrupted

All these theoretical results have been validated successfully on the real demonstra-
tion system.



5. Conclusions and Future Work

5.1 FlexRay over CAN
The first attempts to interface the FlexRay controller via CAN were quite promising,
except of some shortcomings in the CAN implementation that has been used on the
DSP at the RRLab for a while. Configuring the FlexRay parameters and starting
the communication worked pretty well, receiving FlexRay frames on Linux still.

Unfortunately, as soon as data had to be sent in both directions, a big disadvantage of
CAN came into effect: because it is a shared medium with “unfair”1 arbitration, one
direction (DSP→ Linux) was preferred over the other direction, leading to lost CAN
frames and thus to not-received FlexRay frames. One possibility to work around this
problem had been to detect and retransmit lost CAN-frames, but unfortunately the
existing CAN drivers for Linux did not provide easy means to detect frame losses and
even retransmitting would not have given any guarantees for successful transmission.

Because of the very limited physical bitrate of only 1 MBit/s and the severe ar-
bitration problems even at quite low loads, the usage of CAN has been dropped
very soon. To overcome the problems of accessing the FlexRay controller through a
shared medium, a solution capable of full-duplex transmissions had to be found.

5.2 FlexRay over UART
One of the first and most simple things that come into mind when thinking about
serial communication with full-duplex support is the universal asynchronous receiver
and transmitter (UART). Almost all microcontrollers feature an integrated UART
compatible serial interface. Also interaction with PC hardware is easy as most
hardware still has serial transceivers (in the form of RS232) and almost every other
hardware can be equipped with USB-Serial converters that provide virtual serial
ports of the Universal Serial Bus.

The FlexRay over UART concept has proven to be a reliable solution for encapsu-
lating and transmitting FlexRay frames. It does not suffer the severe arbitration

1Unfair meaning the message with highest priority will always win.
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issues encountered with CAN and is also a much more flexible solution as there are
many more ways to connect serial devices to a PC than when using CAN.

It must however be noted, that the FlexRay over UART solution is limited by the
maximum bitrate of the UART. The experimental setup has used a UART speed of
115200 bit/s which was enough to handle the few configured FlexRay slots. It will
be of course much to slow if more slots are used, as the physical bitrate of FlexRay
amounts to up to 20 MBit/s.

5.3 FlexRay over USB
Talking about USB and USB-Serial converters one may also consider using USB
directly without additionally pushing all data trough a UART. The best solution
would be to use a DSP with built-in USB controller as from the MFC525x-family.
Those processors offer a USB high-speed controller that should exceed the datarates
of FlexRay generously.

Another solution that does not involve switching processors is to connect a ded-
icated USB controller to the existing DSP. Thanks to the modular design of the
DSP experiment board such a controller can be easily plugged onto it. During the
research for this Bachelor Thesis an ad-on board has been designed with a Maxim
MAX3420E USB controller. This controller connects to the DSP via the Serial Pe-
ripheral Interface Bus (SPI) at up to 26MHz bus-clock frequency. On the other
side it connects to the Universal Serial Bus as a full-speed device (12 MBit/s), see
[MAX3420E 07]. The PCB layout can be found in Figure 5.1 and the schematic of
the circuit in Figure 5.2.

Figure 5.1: The PCB layout of the MAX3420E adapter board

This circuit will hopefully allow the connection to the Universal Serial Bus without
using a USB-Serial converter, soon.

5.4 FlexRay over PCI
The RRLab has already considered designing an expansion card for the PCI Local
Bus. Thanks to the now existing framework the development of a driver for the card
will be much easier than before.
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Figure 5.2: Schematic for the MAX3420E adapter board

5.5 Modular Controller Architecture (MCA)

At the Robotics Research Lab at the University of Kaiserslautern the Modular Con-
troller Architecture (MCA) framework is widely used for a variety of different robots.
This framework has already a quite nice integration for the Controller Area Network.
If FlexRay is to be used with some robotic applications, it would also need to be
integrated into MCA. Thanks to the now-existing Linux support, the first step for
this integration has just been taken.

5.6 Inclusion in the Linux Kernel

Care has be taken to obey the Linux Kernel Coding Style [Torvalds 07] for all Kernel
code. Additionally, as the FlexRay code is not very invasive (just a few constants
need to be added to external modules) a inclusion in the official Linux source tree
should not be too hard to achieve. Though no further actions have been taken to
do this, yet.



Bibliography

[56F8357 07] freescale semiconductors. 56F8357/56F8157 Data Sheet. 2007.

[Benvenuti 05] C. Benvenuti, Understanding Linux Network Internals, O’Reilly,
2005.

[Corbet 05] J. Corbet, A. Rubini, G. Kroah-Hartman, Linux Device Drivers,
O’Reilly, 2005.

[EPL 06] FlexRay Consortium. FlexRay Communications System Protocol Electrical
Physical Layer Specification Version 2.1 Rev B. 2006.

[Freescale 06] freescale semiconductors. FlexRay UNIFIED Driver User Guide.
2006.

[LLCF 06] Volkswagen Group Electronic Research. Low Level CAN Framework –
Application Programmers Interface. 2006.

[MAX3420E 07] Maxim Integrated Products. MAX3420E USB Peripheral Con-
troller with SPI Interface. 2007.

[MAX3485 97] Maxim Integrated Products. 3.3V-Powered, 10Mbps and Slew-Rate-
Limited True RS-485/RS-422 Transceivers. 1997.

[MFR4310 08] freescale semiconductors. MFR4310 Reference Manual. 2008.

[PS 05] FlexRay Consortium. FlexRay Communications System Protocol Specifica-
tion Version 2.1 Rev A. 2005.

[Rausch 07] M. Rausch, FlexRay: Grundlagen, Funktionsweise, Anwendung, Hanser
Verlag, 2007.

[Romkey 88] J. L. Romkey, RFC 1055: Nonstandard for transmission of IP data-
grams over serial lines: SLIP, june 1988.

[Simpson 94] W. Simpson, RFC 1661: The Point-to-Point Protocol (PPP), july
1994.

[Torvalds 07] L. Torvalds, Linux Kernel Coding Style, 2007. Can be found in the
Linux source tree at Documentation/CodingStyle.

[Vector 08] Vector Informatik GmbH. Hardware Interfaces for FlexRay and CAN.
2008.



Index 47

Index

flexdump, 36
ifconfig, 29
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Controller Area Network, 6
Cycle Count, 14
Cycle Counter, 7
Cycle Filter, 22

Demo Application, 37
Digital Signal Processor, 19
DSP, see Digital Signal Processor
DTS, see Dynamic Trailing Sequence
Dynamic Segment, 9
Dynamic Trailing Sequence, 14

Experimental Board, 18

FES, see Frame End Sequence
Filter Mask, 22
Filter Value, 22

FlexRay over CAN, 26
FlexRay over UART, 27
FlexRay UNIFIED Driver, 20
Frame End Sequence, 14
Frame Format, 11
Frame Header, 11
Frame ID, 13
Frame Start Sequence, 14
Frame Trailer, 14
FSS, see Frame Start Sequence

General Purpose IO, 37
GPIO, see General Purpose IO

Header CRC, 14

In-Band Signaling, 27

Keyslot, 13

MC56F8357, 19
MFR4310, 19
Minislot Procedure, 10

Network Interfaces, 29
Network Management Vector, 12
Network Topologies, 7
Null Frame Indicator, 13

Payload Length, 13
Payload Preamble Indicator, 12
Physical Layer Interface, 20
POC, see Protocol Operational

Control
PPI, see Payload Preamble Indicator
Protocol Family, 29
Protocol Operational Control, 15
Protocol Sniffer, 36
Protocol State, 15
Pulse Width Modulation, 37
PWM, see Pulse Width Modulation
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Reserved Bit, 11

Socket, 29
Startup Frame Indicator, 13
Static Segment, 8
Sync Frame Indicator, 13

TDMA, see Time Division Multiple
Access

Time Division Multiple Access, 8
Topology, see Network Topologies
Transmission Start Sequence, 14
TSS, see Transmission Start Sequence

UART, see Universal Asynchronous
receiver/transmitter

Universal Asynchronous
receiver/transmitter, 24



A. Selected Source Files

Listing A.1: CRC Reference Implementation in C

#define CRC_HEADER_POLY 0xb85

#define CRC_HEADER_IV 0x1a

#define CRC_HEADER_LENGTH 11

#define CRC_HEADER_DATA_LENGTH 20

5

/**

* Header-CRC reference implementation in C

*/

10 unsigned int crc_header_ref(unsigned int data) {

unsigned int shiftreg = CRC_HEADER_IV;

int i;

int bit;

15 for(i = CRC_HEADER_DATA_LENGTH-1; i >= 0; i--) {

bit = ((shiftreg >> (CRC_HEADER_LENGTH-1)) & 0x1) ^

((data >> i) & 0x1);

20 shiftreg <<= 1;

if(bit)

shiftreg ^= CRC_HEADER_POLY;

25 shiftreg &= (1 << CRC_HEADER_LENGTH)-1;

}

return shiftreg;

}
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30

unsigned int create_header(unsigned int frame_id,

unsigned char payload_length,

unsigned char sync_bit,

35 unsigned char startup_bit) {

/*

* SYNC sync frame indicator

* START startup frame indicator

40 *

* X_10 frame-id (key slot = X)

* X_9

*

* X_8

45 * X_7

* X_6

* X_5

*

* X_4

50 * X_3

* X_2

* X_1

*

* X_0

55 *

* Y_6 Payload length (Y*2 bytes)

* Y_5

* Y_4

*

60 * Y_3

* Y_2

* Y_1

* Y_0

*

65 * "Value" is: (SYNC << 19) | (START << 18) | (X << 7) | Y;

*

*/

return

70 (sync_bit << 19) |

(startup_bit << 18) |

payload_length |

(frame_id << 7);

75 }
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unsigned int crc_header(unsigned int frame_id,

unsigned char payload_length,

unsigned char sync_bit,

80 unsigned char startup_bit) {

return crc_header_ref(create_header(frame_id, payload_length,

sync_bit, startup_bit));

85 }
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